59 research outputs found

    Riemann-Roch and Abel-Jacobi theory on a finite graph

    Get PDF
    It is well-known that a finite graph can be viewed, in many respects, as a discrete analogue of a Riemann surface. In this paper, we pursue this analogy further in the context of linear equivalence of divisors. In particular, we formulate and prove a graph-theoretic analogue of the classical Riemann-Roch theorem. We also prove several results, analogous to classical facts about Riemann surfaces, concerning the Abel-Jacobi map from a graph to its Jacobian. As an application of our results, we characterize the existence or non-existence of a winning strategy for a certain chip-firing game played on the vertices of a graph.Comment: 35 pages. v3: Several minor changes made, mostly fixing typographical errors. This is the final version, to appear in Adv. Mat

    Rank of divisors on tropical curves

    Get PDF
    We investigate, using purely combinatorial methods, structural and algorithmic properties of linear equivalence classes of divisors on tropical curves. In particular, we confirm a conjecture of Baker asserting that the rank of a divisor D on a (non-metric) graph is equal to the rank of D on the corresponding metric graph, and construct an algorithm for computing the rank of a divisor on a tropical curve

    Generating bricks

    Get PDF
    AbstractA brick is a 3-connected graph such that the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer. We prove a “splitter theorem” for bricks. More precisely, we show that if a brick H is a “matching minor” of a brick G, then, except for a few well-described exceptions, a graph isomorphic to H can be obtained from G by repeatedly applying a certain operation in such a way that all the intermediate graphs are bricks and have no parallel edges. The operation is as follows: first delete an edge, and for every vertex of degree two that results contract both edges incident with it. This strengthens a recent result of de Carvalho, Lucchesi and Murty

    On 22-cycles of graphs

    Full text link
    Let G=(V,E)G=(V,E) be a finite undirected graph. Orient the edges of GG in an arbitrary way. A 22-cycle on GG is a function d:E2Zd : E^2\to \mathbb{Z} such for each edge ee, d(e,)d(e, \cdot) and d(,e)d(\cdot, e) are circulations on GG, and d(e,f)=0d(e, f) = 0 whenever ee and ff have a common vertex. We show that each 22-cycle is a sum of three special types of 22-cycles: cycle-pair 22-cycles, Kuratowski 22-cycles, and quad 22-cycles. In case that the graph is Kuratowski connected, we show that each 22-cycle is a sum of cycle-pair 22-cycles and at most one Kuratowski 22-cycle. Furthermore, if GG is Kuratowski connected, we characterize when every Kuratowski 22-cycle is a sum of cycle-pair 22-cycles. A 22-cycles dd on GG is skew-symmetric if d(e,f)=d(f,e)d(e,f) = -d(f,e) for all edges e,fEe,f\in E. We show that each 22-cycle is a sum of two special types of skew-symmetric 22-cycles: skew-symmetric cycle-pair 22-cycles and skew-symmetric quad 22-cycles. In case that the graph is Kuratowski connected, we show that each skew-symmetric 22-cycle is a sum of skew-symmetric cycle-pair 22-cycles. Similar results like this had previously been obtained by one of the authors for symmetric 22-cycles. Symmetric 22-cycles are 22-cycles dd such that d(e,f)=d(f,e)d(e,f)=d(f,e) for all edges e,fEe,f\in E
    corecore